The PCS database is cited in the following articles or book chapters.

Articles and Book Chapters

26. Agouridas, V. and Melnyk, O. Using the interactive tool of The Protein Chemical Synthesis Database in Peptide and Protein Engineering, From Concepts to Biotechnological Applications. Iranzo, Olga, Roque, Ana Cecília (Eds.) Springer Protocol Handbooks 2020, 10.1007/978-1-0716-0720-6

25. Agouridas et al. Strategies and open questions in solid-phase protein chemical synthesis. Curr. Opin. Chem. Biol. 2020, 10.1016/j.cbpa.2020.02.007.

24. Diemer et al. A Cysteine Selenosulfide Redox Switch for Protein Chemical Synthesis. Nat. Commun. 2020, 10.1038/s41467-020-16359-6.

23. Yim et al. Direct synthesis of cyclic lipopeptides using intramolecular native chemical ligation and thiol–ene CLipPA chemistry. Org. Biomol. Chem. 2020, in press.

22. Chisholm et al. Peptide Ligation at High Dilution via Reductive Diselenide-Selenoester Ligation. J. Am. Chem. Soc. 2020, 142, 1090-1100.

21. Diemer et al. A Cysteine Selenosulfide Redox Switch for Protein Chemical Synthesis. ChemRXiv 2019, 10.26434/chemrxiv.11110133.

20. Bouchenna, J. et al. Total Chemical Synthesis of All SUMO-2/3 Dimer Combinations. Bioconjugate Chem. 2019, 30, 2967-2973.

19. Agouridas, V. et al. Native Chemical Ligation and Extended Methods: Mechanisms, Catalysis, Scope, and Limitations. Chem. Rev. 2019, 119, 7328-7443.

18. Lombardo, C. M. et al. Design and Structure Determination of a Composite Zinc Finger Containing a Nonpeptide Foldamer Helical Domain. J. Am. Chem. Soc. 2019, 141, 2516-2525.

17. Baldauf, S. et al. A Threonine-Forming Oxazetidine Amino Acid for the Chemical Synthesis of Proteins through KAHA Ligation. Angew. Chem. Int. Ed. 2019, 58, 12599-12603.

16. Bouchenna, J. et al. The Role of the Conserved SUMO-2/3 Cysteine Residue on Domain Structure Investigated Using Protein Chemical Synthesis. Bioconjugate Chem. 2019, in press

15. Swietlow, A. and Lower, A. Chapter 7: A Holistic Quality Control Strategy for Peptide Active Pharmaceutical Ingredients (APIs). RSC Drug Discovery Series 2019, 72, 194-273.

14. Yanase, M. et al. Cysteinylprolyl imide (CPI) peptide: A highly reactive and easily accessible crypto-thioester for chemical protein synthesis. Chem. Sci. 2019, 10, 5967-5975.

13. Zuo, C. et al. One-pot multi-segment condensation strategies for chemical protein synthesis. Org. Biomol. Chem. 2019, 17, 727-744.

12. Pattabiraman, V. R. et al. Amide-forming ligation reactions. Organic Reactions 2019, 97.

11. Hong, Z. Z. et al. Convergent Hybrid Phase Ligation Strategy for Efficient Total Synthesis of Large Proteins Demonstrated for 212-residue Linker Histone H1.2. BioRXiv 2019, 10.1101/661744.

10. Snella, B. et al. Native Chemical Ligation at Serine Revisited. Org. Lett. 2018, 20, 7616-7619.

9. Ollivier, N. et al. Accelerated microfluidic native chemical ligation at difficult amino acids toward cyclic peptides. Nat. Commun. 2018, 9, 2847.

8. Kulkarni, S. S. et al. Rapid and efficient protein synthesis through expansion of the native chemical ligation concept. Nat. Rev. Chem. 2018, 2, 0122.

7. Cheng, W.-M. et al. Selective modification of natural nucleophilic residues in peptides and proteins using arylpalladium complexes. Org. Chem. Frontiers 2018, 5, 3186-3193.

6. Cargoët, M. et al. Catalysis of Thiol-Thioester Exchange by Water-Soluble Alkyldiselenols Applied to the Synthesis of Peptide Thioesters and SEA-Mediated Ligation. J. Org. Chem. 2018, 83, 12584-12594.

5. Du, J.-J. et al. Glycopeptide ligation via direct aminolysis of selenoester. Chin. Chem. Lett. 2018, 29, 1127-1130.

4. Shigenaga, A. et al. ProteoFind: A script for finding proteins that are suitable for chemical synthesis. Tetrahedron 2018, 74, 2291-2297.

3. Pirrung et al. Homoserine and Threonine Peptide Assembly. Synlett 2018, 29, 238-242.

2. Sato, K. et al. Direct synthesis of N-terminal thiazolidine-containing peptide thioesters from peptide hydrazides. Chem. Commun. 2018, 54, 9127-9130.

1. Agouridas, V. et al. A statistical view of protein chemical synthesis using NCL and extended methodologies. Bioorg. Med. Chem. 2017, 25, 4938-4945.