The PCS database is cited in the following articles or book chapters.

Articles and Book Chapters

37. Premdjee et al. Chemical Synthesis of Phosphorylated Insulin-like Growth Factor Binding Protein 2. J. Am. Chem. Soc. 2021, 10.1021/jacs.1c02280

36. Goettig et al. Reversed Proteolysis—Proteases as Peptide Ligases. Catalysts 2021, 10.3390/catal11010033

35. Diemer et al. N,S‐ and N,Se‐Acyl Transfer Devices in Protein Synthesis in Total Chemical Synthesis of Proteins, 2021. Brik, Liu, Dawson (Eds.) Wiley Online Library 2021, 10.1002/9783527823567.ch3

34. Wang et al. Peptide Ligations at Sterically Demanding Sites in Total Chemical Synthesis of Proteins, 2021. Brik, Liu, Dawson (Eds.) Wiley Online Library 2021, 10.1002/9783527823567.ch6

33. Kent, S. B. H. Characterization of Protein Molecules Prepared by Total Chemical Synthesis in Total Chemical Synthesis of Proteins, 2021. Brik, Liu, Dawson (Eds.) Wiley Online Library 2021, 10.1002/9783527823567.ch1

32. Kerdraon et al. Insights into the Mechanism and Catalysis of Peptide Thioester Synthesis by Alkylselenols Provide a New Tool for Chemical Protein Synthesis. Molecules 2021, 10.3390/molecules26051386

31. Agouridas et al. Chemical Protein Synthesis in Medicinal Chemistry: Miniperspective. J. Med. Chem. 2020, 10.1021/acs.jmedchem.0c01082.

30. Abboud et al. An optimized protocol for the synthesis of N-2-hydroxybenzyl-cysteine peptide crypto-thioesters. Org. Biomol. Chem. 2020, 10.1039/D0OB01737J.

29. Nolan et al. Applications of Thiol-Ene Chemistry for Peptide Science. Front. Chem. 2020, 10.3389/fchem.2020.583272.

28. Kirkeby et al. Design, synthesis and characterization of structurally dynamic cyclic N, S-acetals. Chem. Commun. 2020, 10.1039/D0CC03503C.

27. Aucagne et al. Des protéines de synthèse taillées sur mesure pour investiguer le vivant. L’actualité chimique 2020

26. Agouridas, V. and Melnyk, O. Using the interactive tool of The Protein Chemical Synthesis Database in Peptide and Protein Engineering, From Concepts to Biotechnological Applications. Iranzo, Olga, Roque, Ana Cecília (Eds.) Springer Protocol Handbooks 2020, 10.1007/978-1-0716-0720-6

25. Agouridas et al. Strategies and open questions in solid-phase protein chemical synthesis. Curr. Opin. Chem. Biol. 2020, 10.1016/j.cbpa.2020.02.007.

24. Diemer et al. A Cysteine Selenosulfide Redox Switch for Protein Chemical Synthesis. Nat. Commun. 2020, 10.1038/s41467-020-16359-6.

23. Yim et al. Direct synthesis of cyclic lipopeptides using intramolecular native chemical ligation and thiol–ene CLipPA chemistry. Org. Biomol. Chem. 2020, in press.

22. Chisholm et al. Peptide Ligation at High Dilution via Reductive Diselenide-Selenoester Ligation. J. Am. Chem. Soc. 2020, 142, 1090-1100.

21. Diemer et al. A Cysteine Selenosulfide Redox Switch for Protein Chemical Synthesis. ChemRXiv 2019, 10.26434/chemrxiv.11110133.

20. Bouchenna, J. et al. Total Chemical Synthesis of All SUMO-2/3 Dimer Combinations. Bioconjugate Chem. 2019, 30, 2967-2973.

19. Agouridas, V. et al. Native Chemical Ligation and Extended Methods: Mechanisms, Catalysis, Scope, and Limitations. Chem. Rev. 2019, 119, 7328-7443.

18. Lombardo, C. M. et al. Design and Structure Determination of a Composite Zinc Finger Containing a Nonpeptide Foldamer Helical Domain. J. Am. Chem. Soc. 2019, 141, 2516-2525.

17. Baldauf, S. et al. A Threonine-Forming Oxazetidine Amino Acid for the Chemical Synthesis of Proteins through KAHA Ligation. Angew. Chem. Int. Ed. 2019, 58, 12599-12603.

16. Bouchenna, J. et al. The Role of the Conserved SUMO-2/3 Cysteine Residue on Domain Structure Investigated Using Protein Chemical Synthesis. Bioconjugate Chem. 2019, in press

15. Swietlow, A. and Lower, A. Chapter 7: A Holistic Quality Control Strategy for Peptide Active Pharmaceutical Ingredients (APIs). RSC Drug Discovery Series 2019, 72, 194-273.

14. Yanase, M. et al. Cysteinylprolyl imide (CPI) peptide: A highly reactive and easily accessible crypto-thioester for chemical protein synthesis. Chem. Sci. 2019, 10, 5967-5975.

13. Zuo, C. et al. One-pot multi-segment condensation strategies for chemical protein synthesis. Org. Biomol. Chem. 2019, 17, 727-744.

12. Pattabiraman, V. R. et al. Amide-forming ligation reactions. Organic Reactions 2019, 97.

11. Hong, Z. Z. et al. Convergent Hybrid Phase Ligation Strategy for Efficient Total Synthesis of Large Proteins Demonstrated for 212-residue Linker Histone H1.2. BioRXiv 2019, 10.1101/661744.

10. Snella, B. et al. Native Chemical Ligation at Serine Revisited. Org. Lett. 2018, 20, 7616-7619.

9. Ollivier, N. et al. Accelerated microfluidic native chemical ligation at difficult amino acids toward cyclic peptides. Nat. Commun. 2018, 9, 2847.

8. Kulkarni, S. S. et al. Rapid and efficient protein synthesis through expansion of the native chemical ligation concept. Nat. Rev. Chem. 2018, 2, 0122.

7. Cheng, W.-M. et al. Selective modification of natural nucleophilic residues in peptides and proteins using arylpalladium complexes. Org. Chem. Frontiers 2018, 5, 3186-3193.

6. Cargoët, M. et al. Catalysis of Thiol-Thioester Exchange by Water-Soluble Alkyldiselenols Applied to the Synthesis of Peptide Thioesters and SEA-Mediated Ligation. J. Org. Chem. 2018, 83, 12584-12594.

5. Du, J.-J. et al. Glycopeptide ligation via direct aminolysis of selenoester. Chin. Chem. Lett. 2018, 29, 1127-1130.

4. Shigenaga, A. et al. ProteoFind: A script for finding proteins that are suitable for chemical synthesis. Tetrahedron 2018, 74, 2291-2297.

3. Pirrung et al. Homoserine and Threonine Peptide Assembly. Synlett 2018, 29, 238-242.

2. Sato, K. et al. Direct synthesis of N-terminal thiazolidine-containing peptide thioesters from peptide hydrazides. Chem. Commun. 2018, 54, 9127-9130.

1. Agouridas, V. et al. A statistical view of protein chemical synthesis using NCL and extended methodologies. Bioorg. Med. Chem. 2017, 25, 4938-4945.